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Abstract

This paper deals with an inverse problem which consists of the experimental identi®cation of line heat source
strength in an homogeneous solid using temperature measurements. An inverse formulation using the boundary
element method, is used to identify the strength of line heat sources. In the case of multiple sources identi®cation
the location is assumed to be known but, in the case of a single source, an iterative algorithm for the location

identi®cation is proposed. The experiment consists of the identi®cation of the power dissipated by Joule e�ect in one
or two thin wires placed in a long square section cement bar. The measurements necessary to solve the inverse
problem are provided by thermocouples for the internal temperatures and by infrared thermography for the

super®cial temperatures. A time regularization procedure associated to future time steps is used to correctly solve
the ill-posed problem. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Given the partial di�erential equation governing the

heat transfer phenomena, the direct problem consists

of the determination of the temperature ®eld in a

domain O knowing: the geometry, the initial condition,

all the boundary conditions, the heat generation term

and the thermophysical parameters (di�usivity and

conductivity for example).

When one of these functions or parameters is

unknown the problem is called inverse. In the inverse
problem the aim is the reconstruction of an unknown

function or an unknown parameter knowing some
temperature or ¯ux measurements [1,2].
Our contribution to Inverse Heat Conduction Pro-

blem (IHCP) resolution consists of a formulation using

the Boundary Element Method (BEM). In [3,4] BEM
is applied to unknown boundary conditions recon-
struction and in [5] to point heat source strength

identi®cation. In [5] only simulated results are pre-
sented, in the present work we propose an experimen-
tal application of BEM applied to point heat source

strength identi®cation.
In the case of a single source we present an

iterative procedure to identify the line heat source

position. This method, valid for the single source
identi®cation, has been presented in [6,7] using a
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deconvolution procedure. Here, the method is

applied to our experiment for the single source

case, while for the two sources case, the location of

the sources are assumed to be known. We present

in this paper an academic 2-D application, a down

to earth application could be the identi®cation of

cracks in a system submitted to vibrations. The

stressed system produces, at the crack location, a

heat generation which could be detected by our

approach.

Due to the ill-posed nature of the inverse pro-

blem, the timewise variation estimation of the point

heat source intensity is highly sensitive to measure-

ment errors. In order to correctly identify the

source strength, we use the regularization procedure

recommended by Thikonov [8]. This procedure is

applied to the solution over some future time steps.

The experiment consists of a long bar of cement

crossed by a thin heating wire. The aim of the inverse

problem is to identify the position of the wire and the

time variation of the power dissipated by Joule e�ect.

The line heat source represented by the heating wire

can be approximated by a point in the 2-D central sec-

tion. To solve the inverse problem, some temperature

measurements are necessary: internal measurements

provided by thermocouples and super®cial measure-

ments provided by an infrared scanner.
In order to correctly solve the inverse problem using

only temperature measurements, it is necessary to
know the thermophysical properties of the material as

accurately as possible. This is the reason why a par-
ameter estimation procedure is applied to the exper-
imental set-up.

In the ®rst part of the work we present in detail the
experimental design under investigation. The second
part describes the location identi®cation algorithm and

the associated experimental results. The third part sur-
veys BEM formulation for point heat source strength
identi®cation which is detailed in [5]. In this last part
the presentation of the inverse method is followed by

the results obtained with our 2-D experimental test
case.

2. A 2-D experiment using infrared thermographic data

and internal temperatures

In order to test the identi®cation method proposed

in [5], an experiment has been set up. This experiment
also enables the position identi®cation algorithm to be
validated. The experimental design is a long bar

Nomenclature

A linear system matrix
B second member vector
c multiplying coe�cient

C diagonal matrix
d distance from the line heat source (m)
g heat source term (W mÿ3)
g line heat source strength (W mÿ1)
h heat transfer coe�cient (W mÿ2 Kÿ1)
H G; matrices of transient BIE

I matrix for point source treatment
K number of point sources
N boundary elements number
N ' internal points number

p heat ¯ux density (W mÿ2)
P heat ¯ux densities vector
q� normal derivative of T �

Q time regularization matrix
R number of future time steps
S source terms vector

t time (s)
T temperature vector
T � fundamental solution

U space regularization matrix
W second member vector

X solution vector

Greek symbols

a thermal di�usivity (m2 sÿ1)
d Dirac function
E emissivity

G boundary of the di�usive domain
l conductivity (W mÿ1 Kÿ1)
Z time regularization coe�cient

m space regularization coe�cient
y temperature (8C)
s standard deviation
O di�usive domain

Subscripts
0 initial time

k point source index
f time index
F ®nal time

r future time step index
1 ambient conditions

Superscript
' internal points
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crossed at its longest dimension by a thin heating wire.

The chosen material is cement which leads to measur-
able temperature gradients in the material with reason-
able ¯uxes.

The BEM approach for solving inverse problems has
to be implemented with the thermophysical parameters
l and a. The problem is that with this type of material

the thermophysical parameters depend on many fac-
tors: porosity, moisture percentage, sand percentage
. . . Then, conductivity and di�usivity have to be ident-
i®ed `in situ' using a parameter estimation procedure.

2.1. The experimental design

The experimental design under investigation is a
long square section bar of cement crossed at its longest
dimension by two KANTHAL

1

heating wires 0.4 mm

in diameter. In the central section of the bar, the di�u-
sion system is bidimensional. Considering the heating
wire diameter (0.4 mm) compared to the section of the

bar (50 mm � 50 mm), the heat generation can be ap-
proximated by a point in a section (see Fig. 1). Three
sides of the bar are insulated by a solid foam (poly-

styrene) 40 mm thick. The fourth side is scanned by an

infrared AGEMA 880 scanner.
In the section under investigation ®ve interior sen-

sors can be found at the positions displayed in Fig. 2.

Fig. 1. The experimental design.

Fig. 2. Sensors location and boundary conditions in the

studied section.
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The ®ve sensors are K type thermocouples of 0.2 mm

diameter. The ®fth sensor tc5 is not used to identify
the heat sources strength but the thermophysical par-
ameters. This one is placed at about 1 cm of source g1

in order to have a good signal level at short times. The
sensors locations are chosen to have a complete infor-
mation in the body without any knowledge of the

point heat source location. To reduce the perturbation
of the thermocouples on the temperature ®eld, they are

placed along an isothermal line.
The electrical insulation is made by a plastic varnish,

and the measurement junction is located at the centre

of the bar as shown in Fig. 1. Two types of tempera-
ture data can be used: surface temperatures corre-

sponding to the scanned surface, and the four internal
measurements corresponding to four internal points.
The surface temperature is measured using an infra-

red scanner AGEMA 880, the scanned surface is
painted with a black paint of emissivity E=0.98. Infra-
red pictures are made of 64 � 128 pixels (picture el-

ements), in this data®le it is necessary to extract 10
values representing the 10 boundary elements over the

surface of the bar. To obtain this information from the
picture we use a quadratic interpolation over the verti-
cal pro®le at the studied section. The average tempera-

ture is then calculated at the middle of the element in
respect of the constant element approximation used by
the BEM formulation. Only the vertical thermal pro®le

at the studied section is used, what is left of the infra-
red picture is ignored. The maximum picture acqui-

sition frequency is 6.25 Hz which represents a period
of 0.16 s. In our application, the chosen acquisition
period is 25.28 s representing one picture every 158.

To get a constant time step of 40 s, a linear approxi-
mation on time is used.

Internal measurements are obtained using a digital
micro voltmeter associated to a relay card. The refer-
ence junction is kept at 08C in a dewar bowl contain-

ing melting ice. Temperature is calculated using a 6th
order approximation of the reference table for K type
thermocouple between 0 and 2008C. Results are trans-

ferred to a micro computer using an IEEE link.
The energy is provided by a double HP-IB

1

con-

trolled power supply. Current intensity (from 0 to 3.5
A) is imposed by the generator and the voltage is
measured by the acquisition unit. Current in the wires

is imposed in the same acquisition program as tem-
peratures which gives a good synchronism between
solicitation and measurements. For sinusoidal or tri-

angular solicitations, intensity is calculated and chan-
ged every 0.2 s (approximately) which leads to a good

approximation of the chosen function shape. In all the
following, the acquisition time is measured with a
period of about 10 s. A linear interpolation is used to

get a period equal to the BEM program, here 40 s.
As the system can be considered 2-D at the centre of

the bar, the heat source value is: g=Vi/L, with g the
power in W/m, V the measured tension in V, i the cur-

rent intensity in A and L the length of the bar
(0.266 m).

2.2. The experimental inverse problem

Two examples are presented in this paper: the ®rst
one concerns a single source (g1 or g2) identi®cation

(location and strength), the second one is related to
the simultaneous identi®cation of g1 and g2 intensities.
In all these cases we will use the same mesh and the

same boundary conditions. In this paragraph we pre-
sent the boundary conditions used to solve the inverse
problem. To modelize the experiment under investi-
gation the computational domain is discretized in 40

BEM linear elements (10 per side of the square).
The inverse problem consists of solving the funda-

mental heat transfer equation using the following

boundary conditions:

. at t = 0: known homogeneous initial temperature
y(x, y, 0)=y1 and at the boundary;

. on G2: imperfect insulation (40 mm polystyrene)
with ÿl(@y/@n )=h(y1ÿy );

. on G1, known temperatures (measurements from in-

frared thermography);
. four internal temperatures y '(xi, yi, t ) measured at

locations tc1, tc2, tc3, tc4;

. inside the domain, one or two line heat sources of
unknown strength gk(t ).

For the cases involving a single source the position can

be identi®ed using an iterative method, for the double
source case the positions are assumed to be known. It
can be noticed that the introduced set of boundary
conditions does not involve any assumption concerning

the heat ¯ux at boundary G1. Nevertheless some heat
losses are taken into account on the boundary. Heat
loss coe�cient h is identi®ed using a numerical pro-

cedure as described in [6,7]. This numerical procedure
consists of a minimization based on steady state
measurements in order to take into account the heat

losses through the insulation. The insulation is made
by 40 mm of polystyrene foam. Some steady state
measurements associated to a minimization procedure
using the above mentioned boundary conditions leads

to the heat losses coe�cient: h = 2.6 W mÿ2 Kÿ1. A
direct modelization of the 2-D heat transfers through
the foam would give similar results for the average

overall heat losses coe�cient. In this case as the steady
state is never reached a global constant heat transfer
of 2.6 W mÿ2 Kÿ1 is su�cient to modelize the di�usive

losses through the solid foam insulation.
As the studied di�usive system is made of cement, it

is necessary to accurately identify the thermal par-
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ameters: the di�usivity and the conductivity. This is
the purpose of the following paragraph.

2.3. The thermophysical parameter identi®cation

In order to have the most accurate values of thermal
conductivity l and thermal di�usivity a of the cement
bar, these are identi®ed with the same experimental set

up. Wire g1 located at the centre of the bar is heated
for a ®nite duration and the temperature rise is
measured by tc5 inside the solid at a distance d from

the heating wire. The experimental temperature history
is compared to the theoretical one calculated by a
direct model depending on the two parameters. A non-

linear parameter estimation method enables then to
identify the unknown conductivity and di�usivity.
Since we are interested in the central section of the

bar, the wire can be considered as an in®nite line heat
source. Moreover, for short enough times, the bar can
be considered as an in®nite radius cylinder and heat
transfer can be described by a 1D radial model, in

cylindrical coordinates with origin on the heating wire
[9]. The temperature rise y at distance d from the heat-
ing wire that delivers the constant heat ¯ux g for a

®nite duration is then analytically calculated using the
superposition theorem.
In order to ensure the minimal area of the con®-

dence region of the estimates, the experimental par-
ameters to optimize are the duration of heating and
the maximum time at which data are used. This optim-
ization procedure is performed as recommended in

[10,11].
In our experiment, the wire is heated during 101.56 s

and data are ®nally used until 179.5 s. The correspond-

ing values of estimates l and a are presented in Table
1. For this experiment the residuals distribution can be
well approached by a zero mean normal distribution.

That enables assumptions to be validated on measure-
ment errors distribution and to estimate its standard
deviation s=0.0085 K that indicates measurements of

good quality. Taking into account the measurement
errors and the errors on known parameters (g=65.52
0.6 W mÿ1 and d = 9.520.6 mm) leads to the results
presented in Table 1.

3. The point heat source location algorithm

As the thermophysical properties of the experiment

are well estimated, we propose here to deal with a sys-
tem containing a single point source. The aim here is
to identify its position from the measurement at ther-

mocouples tc1 to tc4 and the super®cial temperatures
and ¯uxes over the scanned surface (G1 see Fig. 2). It
has to be noticed that we do not use any prior infor-

mation on the time variations of the source strength.

3.1. The algorithm

The method is based on the resolution of an IHCP
using the measured temperatures tc1 to tc4. The aim is

to solve an inverse problem using these temperatures
in order to identify the strength of two separated arti-
®cial heat sources gA and gB located in the di�usive
domain O (see Figs. 3 and 4). That corresponds to a

Fig. 3. Example of an iteration involving xg(1) identi®cation.

Fig. 4. Example of an iteration involving yg(1) identi®cation.

Table 1

Identi®ed parameters and 99% con®dence intervals

l2Dl (W mÿ1 Kÿ1) a2Da (m2 sÿ1)

0.82520.007 5.2� 10ÿ720.7� 10ÿ7
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partition OA, OB of domain O. As the measured tem-
peratures come from a single source, the identi®cation

of the strengths will point out one source rather than
the other one, the pointed source is supposed to be the
nearest of the real source. For the example described

at Fig. 3 the part of the domain supposed to contain
the searched heat source is OA, two other arti®cial
sources are set in OA and the procedure can be

resumed. To achieve the iterative process we assume
that there is only one heat source in the domain O and
that the heat source strength is positive.

It is important to notice that the IHCP is solved in
the sense of a double heat source strength identi®-
cation. The domain, the boundary mesh and the
boundary conditions are the same during the iterative

process, the only variables are the double heat source
locations. The inverse method used here can be a lin-
ear Beck method [1,6] or BEM [5] described at section

4. The inverse method consists here in a two sources
intensity identi®cation using future time steps pro-
cedure of [1] and a regularization operator.

Using the above mentioned procedure of elimination
of the supposed heat source location, the possible
domain is reduced to a point, the location of this point

is the identi®ed location of the single source.
For a 2-D Cartesian geometry the algorithm can be

described as follows.

1. The 2-D domain O is divided in two ®ctive parts

O(0)
A and O(0)

B (for example parallel to Oy see Fig. 3).
Each part is supposed to contain one source.

2. Two point heat sources g (0)
A and g (0)

B are created and

supposed located at two points, one in each ®ctive
part (here at y=constant).

3. The inverse problem is solved on the entire domain

O in the sense of the strengths identi®cation of g (0)
A

and g (0)
B . The identi®cation is performed for F time

steps by solving the IHCP on the domain O using

an inverse method. As a result, the strengths of g (0)
A

and g (0)
B are known for each time tf (0R tf R tF).

4. When the strengths are known, it is possible to cal-
culate the centre of gravity of the two point sources.

In a cartesian geometry for instance if y= constant
we have:

x �1�g �

XF
f�1
�g�0�A � f �x �0�A � g�0�B � f �x �0�B �

XF
f�1
�g�0�A � g

�0�
B �

: �1�

5. The part of domain O which does not contain
x (1)
g is supposed to not contain any source and is

excluded (for example here part B) of the location
identi®cation process. The other part, supposed to
contain the heat source, is then divided in two parts

O(1)
A and O(1)

B (with a parallel to Ox, see Fig. 4) and
the next iteration will concern the y (1)

g value. In the

next iterations the excluded parts still remain for the
resolution of the inverse problem which is per-
formed on the entire domain O without any modi®-

cation of the boundary conditions.

6. The algorithm is reproduced until the process
described above converges toward a single point

(according to a chosen criterion). After some iterations
(niter) the coordinates of this point x (niter)

g y (niter)
g are

supposed to be the searched point heat source coordi-

nates xs and ys. Let us notice that the sum

XF
f�1
�g�k�A � f � � g�k�B � f ��,

calculated at iteration k is also a mean to follow the

convergence. In fact, this sum tends towards constant
when the point source is located. That gives a sup-
plementary criterion to stop the iterative process.
7. When the location is identi®ed we can ®nd the

intensity by solving the inverse problem for all the
time steps using the deconvolution method [6] or BEM
[5].

3.2. The experimental location identi®cation

The method previously described is applied to our
experiment (see Fig.2). Two di�erent experiments have

been performed separately: a step of 96 W mÿ1 on g1
and a step on g2. For each case, the aim is to ®nd the
location of the sources from the knowledge of

measured temperatures from tc1 to tc4 (see Fig. 2).
For the ®rst case g1 whose real coordinates are

xg1=25 mm and yg1=25 mm, we found: R = 4,
niter=18, average strength=94 W mÿ1, x=25.97 mm,

y = 24.39 mm which represent in distance 1.1 mm
from the supposed location of g1, this result is
obtained using four future time steps and only the ®rst

time step (F = 1). The minimum error on the location
is obtained for F = 7, the results are then: niter=13,
average strength=94.4 W mÿ1, x = 25.90 mm, y =

24.47 mm which represent in distance 1.04 mm. This
result is good compared to the diameter of the heating
wires (0.4 mm).
For source g2 (xg2=15 mm and yg2=30 mm), using

the ®rst time step (F = 1) and four future time steps
we obtained: niter=15, sum=96Wmÿ1, x=16.23 mm,
y = 29.83 mm which represent an error on the

location of 1.24 mm. Using seven time steps (F = 7)
we obtained for R = 4: niter=17, x = 16.36 mm,
y = 29.98 mm, average strength=96.28 W mÿ1. In

terms of distance the error is 1.36 mm, in this case the
increase of the number of time steps identi®ed does
not improve the results.
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For both experiments the strength is constant. On

the one hand the results obtained for g1 location are
better than for g2 location, on the other hand the
strength (96 W mÿ1) is better reconstruct for g2 than

for g1. The good results obtained for the location
identi®cation are due to the fact that g1 is in the centre
of the square tc1 tc2 tc3 tc4. The good results obtained

for g2 strength identi®cation are due to a high sensi-
tivity of sensor tc1 to g2 strength variations, this result
will be con®rmed in the following section.

For g1, the sensitivity coe�cients are almost equival-
ent, which is not the case for g2. In Fig. 5, we present
the temperature sensitivity coe�cients to a position

variation at the four internal sensors. The sensitivity
coe�cients Sx and Sy are de®ned as the ®rst derivatives

of temperature with respect to coordinate. With a ®rst
order approximation, we have:

Sx � Dy
Dx

and Sy � Dy
Dy
:

The curves displayed at Fig. 5 are built for a triangular
variation of strengths on g1 and g2 and a variation of
1 mm on x or y. Considering g2, as we can see on Fig.

5(c) and (d), the sensitivity to the y coordinate vari-
ation is much more important than the sensitivity to
the x coordinate. This is not the case for g1 for which

all sensitivities are similar (see Fig. 5(a) and (b)).
Nevertheless, these positions are very important for
the ®nal results and an error on g1 position has a

Fig. 5. Sensitivity coe�cients (8C mmÿ1) to the position vs time (s) using an exact position. (a) Sx for g1 and Dx= 1 mm; (b) Sy

for g1 and Dy=1 mm; (c) Sx for g2 and Dx=1 mm; (d) Sy for g2 and Dy=1 mm.
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great in¯uence compared to an error on g2 position as
we will see below.

4. The point heat source strength identi®cation

In this part of the paper we describe brie¯y the
BEM approach for point source strength identi®cation.

In the second part we give some results obtained on
the experimental design presented in Section 2. Some
results are presented for one or two heat sources

strength estimation using the thermocouples and infra-
red thermographic data. The position of line sources
g1 and g2 are now assumed to be known and we will
use the exact or previously identi®ed location.

4.1. The boundary element method for the time varying
strength estimation of point heat sources

The inverse method presented here is based on BEM

and is already presented and detailed in [5] for heat
point source strength reconstruction. The method is
based on a time regularization procedure associated to
some future time steps. This association permits to

stabilize the solution of the ill posed problem. In the
following paragraphs we describe brie¯y the basis of
our approach, all the details concerning BEM can be

found in [12] for direct problems and in [5] for inverse
problem resolution. As the aim of this paper is to pre-
sent an experimental application of BEM for heat

source strength identi®cation, this part is reduced to
some general concepts. All the details concerning BEM
for point heat source identi®cation are given in a pre-

vious publication [5].

4.1.1. The boundary integral equation

In terms of temperatures y, the linear transient heat
di�usion equation can be written:

rC
@y
@ t
� l ~r2

y� g �2�

with a the thermal di�usivity, g the heat source term, y
the temperature and l the heat conductivity.

The latter partial di�erential equation is linear in y
as the thermal parameters are assumed constant. Con-
sidering point M, of domain O of boundary G, integrat-
ing twice Eq. (2) weighted by a fundamental solution
T� [12], leads to the Boundary Integral Equation (BIE)
for the linear transient heat conduction [12]:

cyM, tF �
�tF
t0

�
G
ayq� dG dt

�
�tF
t0

�
G
a
p

l
T � dG dt�

�tF
t0

�
O
a
g

l
T � dO dt

�
�
O
y0T � dO �3�

with M a point of G or O, p the heat ¯ux density, T�

the fundamental solution, q� the normal derivative of

T� and c a coe�cient which depends on the position of
M, namely c=1, if M is in O and c<1, if M is on G
(e.g. c=0.5 if G is smooth at M ).

For transient and non-linear thermal di�usion (tem-
perature-dependent conductivity), the BIE formulation
is possible only if the space and time derivatives of the

di�usivity are small. The fundamental solution T � is a
time-and-space-dependent Green function [13] which
permits to cope with localised measurements (internal

points) and singularities as heat point sources. It has
to be mentioned that BEM does not require a com-
plete domain mesh but only a boundary mesh (see
[12]).

4.1.2. The heat point source treatment
If the initial temperature ®eld is uniform or station-

ary, the domain integral in Eq. (3) associated to initial

conditions vanishes. Nevertheless, in Eq. (3), a domain
integral associated to the heat source term g still
remains. Let us consider a set of K point heat sources
in domain O; then the heat source term g in BIE (3)

can be written:

g �
XK
k�1

gkdMk
�4�

with: gk the algebraic strength of the source k, dMk
the

Dirac function at the location Mk of point source k.
Using the properties of point heat sources, the

domain integral corresponding to the heat source in
Eq. (3) can be simpli®ed [5]. It should be noted that a
line heat source in a 3D system can be represented by

a point in the 2-D di�usive system; this last con®gur-
ation is realized here using a thin heating wire in a
long bar.

4.1.3. The discrete formulation

To discretize BIE (3), we use elements constant over
space, and linear over time. This last assumption
means that the temperatures and ¯ux densities are

taken to be constant on each element and linearly vari-
able between two successive time steps. In a similar
way a linear variation in time for the heat source
strength gk within each time step will be assumed. If

the geometry, the di�usivity and the coordinates of the
set of sources are known, by applying a discrete form
of (3) to all N boundary nodes it is possible to calcu-

late some time and space dependent coe�cients, these
coe�cients are given in details in [5,12]. The calculated
coe�cients are gathered in matrices H, G and I. A

similar formulation is used to build matrices H ', G '
and I ' corresponding to the N ' internal points. If we
use a successive resolution procedure provided that at
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time tF all the variables are known for t< tF and if it
is assumed that the N ' internal temperatures are

known, we can build the system:�
0
T 0F

�
�
�

C�H
H 0

�
TF

�
�

G
G 0

�
PF ÿ

�
I
I 0

�
SF �

�
WF

W 0
F

�
�5�

with: TF (T 'F) vector of dimension N of temperature on

the boundary nodes at resolution time tF, PF: vector of
dimension N of heat ¯ux densities on the boundary
nodes at time tF, H, G, (H ', G ') matrices of dimension

(N, N ) ((N, N ')), SF vector of the intensity for the K
point heat source at time tF, I (I '): matrix of dimension
(N, K ) ((N ', K )), C: diagonal matrix of dimension (N,

N ), WF second member vector of dimension N con-
taining all the information for t< tF.
System (5) contains N+N ' equations and 2N+K

unknowns, namely N boundary temperatures, N
boundary heat ¯ux densities and K point heat source
strength.
If we can ®nd N boundary conditions (one per el-

ement), which can be an imposed temperature, a heat
¯ux or a combination of these two variables, the num-
ber of unknowns is reduced to N+K. If N 'rK, (5)

can be solved using a least squares method. Consider-
ing the ill-posed character of the inverse problem, as
recommended in [1], we use some future time steps.

Over the future time steps we use a regularization pro-
cedure similar to the sequential regularization pro-
posed in [1].

4.1.4. Future time steps Ð time and space regularization

procedures
The method of the future time steps consists of sol-

ving the problem at time tF taking into account the

measurements at times tF, tF+1, tF+2 . . . tF+R in
order to increase the sensitivity of the solution to the
measurements at time tF. Applying this procedure we

obtain a macro system including a formulation of (5)
over the future time steps. If we rearrange the obtained
macro-system and combine the unknowns in a vector
X, we obtain:

AX � B �6�

with A a matrix of dimension ((N+N ')(R + 1),
(N+K )(R + 1)), X a vector of dimension ((N+K )(R
+ 1)) and B a vector of dimension (N+N ')(R+1). In

the general case we have more measurements than
unknowns (N ' > K ) and X has to minimize a cost
function J(X ) de®ned as:

J�X � � kAXÿ Bk2 �7�

The regularization procedure, used to reduce excur-
sions into the unknown function, is based on the regu-

larization operator recommended by Thikonov [8] and
is already applied in [5]. Let us introduce the time
regularization matrix Q of dimension ((N+K )(R+ 1),

(N+K )(R + 1)) and Z a coe�cient adjusting the
amplitude of Q. The described procedure is similar to
the sequential regularization method proposed in [1]

by Beck et al. For this approach described in [1], Thi-
konov regularization operator [8] is applied to the
unknowns over the future time steps in a sequential

way.
This method applied to the time dependent variables

over the R future time steps is not e�cient to reduce
the spatial oscillations of the space dependent vari-

ables. The space regularization procedure is described
in [3] for the heat ¯ux density identi®cation. Using a
similar formulation such as described in [3,4], the

space regularization matrices are gathered in a macro
matrix U of block diagonal form associated to a coef-
®cient m, adjusting the amplitude of the operator.

Matrices Q and U are built on the successive deriva-
tives of the function to be regularized as recommended
by Thikonov [8].

If we use a space and time regularization procedure,
the system de®ned in Eq. (6) is modi®ed and X has to
minimize a modi®ed cost function J(X ) de®ned as the
following:

J�X � � kAXÿ Bk2 � mkUXk2 � ZkQXk2 �8�

If we apply the least square method (in the case of an
Euclidean norm) to minimize function (8), this leads to

Fig. 6. Measured internal temperatures (8C) vs time (s) at the

four internal sensors (375 points per curve) and experimental

g2 strength (W/m) vs time.
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vector X solution of the square system of linear
equations:

�ATA� mUTU� ZQTQ�X � ATB: �9�

A resolution of (9) is performed at each time step tF.
From vector X we extract component XF of the
unknowns at time tF; the other components (XF+1,

. . . , XF+R) of X being ignored. Then the computation
can be resumed for time tF+1 to work out vector XF+1

ignoring components (XF+2, . . . , XF+R+1).

In all the following we will use a second order regu-
larization which preserves the average of the identi®ed
function. The association of time and space permits to

regularize all the unknowns: the point heat source
strength in time and the identi®ed heat ¯ux densities
over the scanned in surface space.

4.2. Experimental results of identi®cation

In this part we present some results obtained for

di�erent identi®cation of the strength of g1 or g2 or

both using BEM. This paragraph is divided in four

parts, the ®rst one presents an example of measure-

ments for a particular intensity evolution of g1 studied

in the above sections. The second one concerns the

identi®cation of a single source using four sensors: it

will show the importance of the source location pre-

cision. The third part presents some similar results

obtained with two sensors: it will show the importance

of the regularization and future time steps procedures

in experimental identi®cations. The last section gives

an example of a double source intensity identi®cation.

Fig. 7. Identi®ed intensity (W mÿ1) of g2 vs time (s) using an exact position and no regularization (m=Z=0). (a) Triangular, R=

3; (b) triangular, R=6; (c) stepwise, R=3; (d) stepwise, R=6.
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4.2.1. Example of measurements

The measurements presented in this section are used

in the following sections to reconstruct the time vari-

ations of g2. Fig. 6 presents on the same chart the tem-
perature variations measured at sensors tc1, tc2, tc3,

tc4 and the triangular power variation imposed on g2.

As we can see at Fig. 6 sensor tc1 is very sensitive to

g2 strength variations, which is explained by the short

distance between the sensor and the heat source:

11.2 mm. The responses obtained at sensors tc2 to tc4
lag behind the solicitation and are damped compared

to tc1. As we will see in section 4.2.3, this lack of sen-

sitivity has a bad in¯uence on the IHCP results. This

in¯uence will have to be balanced by the resolution

parameters: the number of future time steps and the
regularization parameter Z.

4.2.2. Experimental intensity identi®cation of a single
source using four sensors

The example corresponding to the results displayed

in Fig. 7 concerns the identi®cation of g2 using 4 ther-

mocouples and the exact position. Two solicitations

are presented here: a triangular variation and a step-

wise variation in time. It is important to notice that
these results are obtained without any regularization

term (m=Z=0 in Eq. (14)). Nevertheless some future

time steps are necessary to reconstruct the original sig-

nal as we can see by comparing Fig. 7(a) and (b) and

also (c) and (d).

The triangular variation is better reconstruct than

the stepwise variation. The total energy identi®ed
during all the time steps is 144.307 kJ mÿ1 for the tri-

angular variation and 260.420 kJ mÿ1 for the stepwise

Fig. 8. Identi®ed intensity (W mÿ1) of g1 vs time (s) using an exact position. (a) Triangular, R=6, Z=10ÿ8; (b) triangular, R=6,

Z=10ÿ5; (c) stepwise, R=6, Z=10ÿ8; (d) stepwise, R=6, Z=10ÿ5.
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variation. The di�erence between the experimental

input and the identi®ed energy is of 0.04% in the tri-

angular case and 4.33% in the stepwise case. This
result is explained by the level of energy which is more

important in the stepwise case. Thus the reconstruction

is more sensitive to errors in the thermal losses
through the insulation estimation and also to errors in

the assumed location of the experimental source. The

less good result displayed at Fig. 7(d) compared to the

one displayed at Fig. 7(b) can also be explained by the
shape of the function to be identi®ed. The stepwise

case is very di�cult for IHCP resolution due to the

damping and lagging properties of the transient di�u-
sion equation. The presented example shows once

again that inverse methods fail to well reconstruct the

high frequencies ¯ux evolution [1,2]. Nevertheless, the
maximum error between estimated and measured func-

tion is less than 10%, and the total error is of 4.33%

which can be considered satisfactory.

In order to compare the results obtained for g2 and
g1, on the next ®gure we display the same results

obtained in similar conditions for g1. For this example

of resolution, we have chosen to present the results
obtained using six future time steps and di�erent

values of the time regularization parameter Z.
As we can see on Fig. 8 the results obtained for heat

source identi®cation are very sensitive to the sensor lo-
cations. Results displayed at Fig. 8 can be compared

to results displayed at Fig. 7. In both Figs. 7 and 8 the

stepwise variation case shows some di�erences between
the identi®ed part and the measured one. These di�er-

ences will be explained further on by an error on the
assumed exact source position.

For line source g1 (see Fig. 8) the distance from the

Fig. 9. Identi®ed intensity (W mÿ1) of unknown strength vs time (s) using an exact position with a bias of ÿ1 mm. (a) g1, R= 6,

Z=10ÿ5, bias on x; (b) g1, R=6, Z=10ÿ5, bias on y; (c) g2, R=6, Z=10ÿ8, bias on x; (d) g2, R=6, Z=10ÿ8, bias on y.
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sensors to the source is more important which explains

the chosen number of future time steps used (R = 6).

Here, in order to have correct results we have to use a

second order time regularization, the coe�cients are

chosen in order to have a smooth shape. As we can

see in Fig. 8(b) and (d) the increase of the regulariz-

ation coe�cient leads to smooth results but then the

method fails to reconstruct abrupt variations of the

intensity.

We have to point out that for sources g1 and g2 in

the stepwise case, the ®rst identi®cations are over-esti-

mated compared to the experimental curve as we can

see on Figs. 7(c) and (d), 8(c) and (d). This overesti-

mated value is explained by the abrupt variation of

power and the low level of temperature at the ®st time

steps. This low level leads to take into account the

measurement errors as an original signal.

Before examining the case of the reconstruction

using an identi®ed position, let us consider the case of

an exact position and examine the case of a 1 mm

error on the position of g1 or g2 with ®xed positions

for the four sensors. Fig. 9 presents the results of the

identi®cation using a bias on the sources location.

Considering all sensors a 1 mm error seems to be a

Fig. 10. Identi®ed intensity (W mÿ1) of g1 or g2 vs time (s) using the identi®ed positions: g1(25.9; 24.4) and g2(15.3; 29.9). (a) g1,

R=6, Z=10ÿ5; (b) g2, R=6, Z=10ÿ5.

Fig. 11. Identi®ed intensity (W mÿ1) of g1 vs time (s) using exact position, R=6, Z=0 and two sensors. (a) Sensors tc1 and tc3, R

=6, Z=10ÿ6; (b) sensors tc2 and tc4, R=6, Z=10ÿ6.
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good approximation of position error. The ®rst col-

umn concerns an error on x of ÿ1 mm, the second col-

umn an error on y of ÿ1 mm, the ®rst row concerns

g1 the second one g2.

As we can see on Fig. 9 the pro®le of the imposed

power is well recovered but the intensity pro®le is not

perfectly reconstructed. This is especially the case for

g2. Actually the sensitivity of sensor tc1 is so import-

ant that a small error on the location has a great in¯u-

ence on g2 strength identi®cation. On the other hand,

the g1 assumed location does not in¯uence the recon-

struction of the power because of a lower sensitivity of

g1 to the measurements. If the distance between heat

source and the sensor is over (under) estimated, the

strength will be also over (under) estimated. This can

be seen immediately by examining an analytical esti-

mation [9] of the temperature. We have also a corrupt

pro®le compared to the original, especially for constant

pro®le for which the di�erences are easier to detect.

As shown by the sensitivity coe�cients displayed at

Fig. 5 the g1 strength identi®cation is less a�ected by a

coordinate error compared to g2 strength identi®-

cation. This result is explained by coe�cients con-

tained in matrix I, these coe�cients are a decreasing

function of the distance as shown in [5]. This leads to

a higher sensitivity to measurement errors but a lower

sensitivity to location errors.

The last example concerns the results obtained using

the best identi®ed positions for g1 and g2, with the fol-

lowing coordinates:

. for g1 x=25.9 mm, y=24.4 mm;

. for g2 x=15.3 mm, y=29.9 mm

As we can see in Fig. 10(a) and (b) the original pro®le

Fig. 12. Identi®ed intensity (W mÿ1) of g2 vs time (s) using exact position two sensors. (a) Sensors tc1 and tc3, R = 6, Z=0; (b)

sensors tc2 and tc4, R=6, Z=0; (c) sensors tc2 and tc4, R=6, Z=10ÿ8; (d) sensors tc2 and tc4, R=6, Z=10ÿ5.
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is not well recovered which is explained by an error on
location and by some inhomogeneous heat losses

through the insulation.
Nevertheless, the identi®cation results are satisfac-

tory with for g1: a cumulative error of ÿ176 W mÿ1

and a mean error of ÿ2.00 W mÿ1 and for g2 a cumu-
lative error of ÿ425 W mÿ1 and a mean error of ÿ4.83
W mÿ1. At this point of the paper it is important to

notice that for a single source a single sensor would be
enough to solve the problem of the strength identi®-
cation. In this case the location identi®cation would

not be possible. As an example, in the following para-
graph we examine the case involving two sensors for
the identi®cation of a single heat source strength.

4.2.3. Experimental intensity identi®cation of a single
source using two sensors
The two pairs of sensors (tc1; tc3) and (tc2; tc4) are

used. In Fig. 11 we present the results obtained for the
g1 strength identi®cation using two sensors. As the ex-
perimental set is symmetrical the results are nearly

identical for the same conditions, and the di�erences
are due to an error in the position estimation.
As we can see on Fig. 11(a) and (b) the results

are very similar to those obtained with four sensors,
because the indications of sensors (tc1; tc3) and
(tc2; tc4) are correlated. This is not the case for
heat line source g2 for which the location is not

symmetrical with respect to sensors (tc1; tc3) and
(tc2; tc4). In Fig. 12 we present the identi®cation of
g2 using sensors (tc1; tc3) or (tc2; tc4).

The results obtained using sensors tc1 and tc3 are
good, which is not the case using sensors tc2 and tc4.
If we examine Fig. 2, the indications provided by ther-

mocouples 2 and 4 are correlated and less sensitive

than indications given by thermocouples 1 and 3. In

fact thermocouple tc1 would be su�cient to identify

correctly g2 strength. The characteristic time value

(distance2/a ) are:

. for tc1 238 s then six time steps;

. for tc2 1382 s then 35 time steps;

. for tc3 1954 s then 49 time steps;

. for tc4 810 s then 21 time steps

In terms of number of time steps the value obtained

for tc1 is very low compared to the others. In this case

the time lag between the cause (g1 strength variation)

and the e�ect (temperature measured at tc1) is short.

As a result, a number of six future time steps leads to

very good results without any regularization pro-

cedure. In the other cases a time regularization pro-

cedure is necessary to deal with a lack of future time

steps. This is the case for results displayed in Fig. 12.

It shows that using thermocouples tc2 and tc4 leads to

bad results without regularization.

In system (9) the resolution performed to obtain

the heat source strength displayed at Fig. 12(a)

leads also to the heat ¯ux density pro®le over the

scanned surface. In the previous experimental studies

presented in [4] the aim was the heat ¯ux density

®eld identi®cation which is not the case here.

Nevertheless in down to earth applications this last

property can be used for the time and space identi-

®cation of heat transfer coe�cients by scanning the

concerned surface and identifying the heat ¯ux den-

sity ®eld.

It can be noticed that in the case of a cylinder

placed in a transient ¯uid ¯ow, it is possible to identify

Fig. 13. Identi®ed intensity (W mÿ1) of g1 or g2 vs time (s) using four sensors and identi®ed positions: g1(2.59; 2.44) and g2(1.60;

3.01). (a) R=6, Z=10ÿ8; (b) R=6, Z=10ÿ5.
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the heat transfer coe�cient at the boundary with only
temperature measurements: internal temperatures in

the material (in order to identify the heat line source
strength) and surface temperature provided by an in-
frared scanner.

4.2.4. Experimental intensity identi®cation of two
sources using four sensors
For these last results we present the simultaneous

identi®cation of line heat sources g1 and g2 strength,
the results using an identi®ed location are displayed in
Fig. 13. The positions used to obtain these results have
been identi®ed above (see section 3.2). The results are

satisfactory but we can point out that in the recon-
struction procedure, line source g1 strength is overesti-
mated and g2 strength is underestimated. This

di�erence is a result of the particular position of the
di�erent sensors in the bar which can lead to an
almost singular resolution matrix. As the energy has to

be preserved, given the temperature level and the ther-
mal parameters, if a line heat source is over estimated,
the other one will be underestimated with a global con-
servation along all the time steps. For the result pre-

sented below the sum of the algebraic errors on g1 is
300 W mÿ1, the sum of the errors on g2 is ÿ592 W
mÿ1. The global error is then of ÿ292.26 W mÿ1 over

all the time step which represent an average of ÿ3.32
W mÿ1. The results of the identi®cation procedure are
satisfactory but some improvements can be done in ac-

curacy of thermocouples and line heat source lo-
cations.

5. Conclusion

In order to test our previous numerical works about
heat source identi®cations, we set up a 2-D experiment.

This one permits us ®rst to solve a transient 2-D IHCP
which consists of a point heat source location using an
iterative algorithm and, when the location is known,

the reconstruction of time variations of line heat
source intensities. The IHCP resolution is performed
using a BEM inverse formulation connecting a future

time step and a regularization method. Through this
experiment, we show the good potentialities of our
methodology, connecting numerical and experimental
approaches. In further investigations, we intend to

identify multiple heat sources location and strength
using infrared thermography, an application could be

the non destructive control.
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